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ON ASSOCIATED RADIAL HEAT EXPANSIONS

L. R. Bragg, Case Institute of Technology

1. Introduction. Let p > 1 and let Ap denote the radial Laplacian
e, Bl ch .
operator Ap =D_ + - D,. Criterion has recently been given ([1],[3])

under which a classical solution u(r,t) of the radial heat equation

(1.1) %u@ﬂ)=%uhﬂ}

has valid series representations in terms of the set of radial heat

polynomials {R?(r,t)}?zo and the set of associated radial functions

{ﬁ%(r,t)}?zo. These sets are defined by
r . (E—l
(a) R?(r,t) = j1(4t)Y sz )(-rz/lpt)
(1.2) . i=0,1, 2, ...
() B(r,0) =+ 5 (r,0)RE(r,~0)

where Lgu/z_l)(x) is the generalized Laguerre polynomial of degree
_ R

and index %-—1 and Sp(r,t) is the source solution (4mt) p‘/2e T /At.

It was shown that if a solution u(r,t) of (1.1) exhibits the Huygens'

property and satisfies the additional condition

] 2
(1.3) f gl 5/8t | u(g,t) |dg < =
0

for t> o2 0, then this u(r,t) has an absolutely convergent expansion

in terms of the set {ﬁ?(r,t)}? for t> 02> 0. Moreover, the co-

j=0

efficients in the expansion

(1.4) u(r,t) = Z: a5 B (r,t)



are defined by the integral

/2 ® on-1
(1.5) a, = —= "1 RE(g,-t)u(E,t)dg
boo2Mar(e b jo )

This series representation can be replaced by the integral representation
-]

(1.6)  ulr,t) = fo ¢, (78000 (8)dE .

In this, V(E) 4is an entire function of growth (l,s) in §2 and is
[--]
= .. .

given by ¢(g) = ZJ(--].)J R 3 §23 and
vl

2
(1.7) ¢, (r8t) = (2m) /2 10/2 gu/2 5, taett

2—1

It is apparent that the construction of an associated radial
heat expansion for a suitable u(r,t) by means of (1.4) is not very
efficient. The purpose of this note is to give a procedure for ob-
taining such a series representation that often avoids the usage of
(1.4). The knowledge of this series will also lead directly to the
appropriate choice for (g) in (1.6). From the fact that the ﬁ%(r,t)
are defined in terms of the Laguerre polynomials, one would expect to
make use of some special property of them in this construction.

A procedure that involves the Laplace transform will prove to
be effective in treating this problem. Expansions of functions in
terms of Laguerre polynomials by means of the Laplace transform have
received some attention. Doetsch [2] has examined this approach and

has given a rather detailed proof for its validity (also see [4].



-3 -

The method for evaluating the a, along with the proof of
its validity is given in Section 2, Examples of the use of this
technique are given in Section 3 to obtain explicit expansions of
the form (1.4) as well as integral representations of the form (1.6).
A byproduct of this is that we obtain the evaluations of some rather

complicated integrals.

2. A Coefficient Determination. Let u(r,t) be a solutidh of

(1.1) that satisfies the Huygens' property and (1.3) and let
x = r2/4t. Upon equating this u to the series (1.4) and using

(1.2), we obtain

= (-1)Ya j14d

X _ (u/2-1)
(2.1) & w2/ xt , t) 'Eg —zz;;;j7§;3 Lj (x) .
J:

Now multiply both members of this by x“/Z_l and form the Laplace
transform of both members of this by selecting % as the transform-
ing variable for x. It follows that [2]

fm -(—p-ﬁx

o w(2VE, 1) B2 o
0

(2.2)

-]

J 3
) E: (-1)*a, 4T (3+u/2) u/2 —p)j.
(Ant)U/Q 49

3=0

The integral here exists for p near 1 by the condition (1.3). Next,
multiply both members of this by p_p'/2 and evaluate the nth deriva-

tive of both members of this with respect to p at p = 1. We get



/2 n -( ~1)x E-1
(2.9 an=4“~”“” e - (@) A R e
n! T (E+n)

For the purpose of showing that (2.3) reduces to (1.5), let us
observe that (see [5], p.84)

i_ X
—(p 1)

p—p./2 o [1 - (l—p) ]‘IJ:/Z e—X(l-P)/[l = (l'p)]

T

= z L(p'/21 :l.p)'J

j=0
It results that
-{ -1}x (E-1)
AN (/2 = (-])® 2
(;p = (-1)" n! L (x) .

p:

Finally, substituting this last into (2.3) gives

(2.4) a =L (g2 tnf L0/20) (#4271 Lo/ ) ax
n r( E+ ) 0 "o

The reduction of the right member of this to the right member of (1.5)
now follows by reintroducing the change of variables x = r2/4t (with

(&-1)
dx = 2t dr) into this and replacing Ln2 (r2/4t) in terms of

Ri(r,—t) by means of (1l.2a).

It is clear from this that if we have an explicit evaluation of
the left member of (2.2), then we can determine the coefficients a,
in (1.4) without resorting to the integrals (1.5). In these cases, we

can then formulate other representations, both series and integral,



rather readily.
|

3. Some Examples. We now indicate the applicability of the above

procedure to specific functions. One of the principle points of
interest here is the connection between various integral represen-

tations for the same function. The 'good' examples make note of this.

2
Example 1. Let a > O and let u(r,t) = (1+Aat)_p/2é_a1'/(l+4at).
Then the condition (1.3) is satisfied by choosing o = 1/4a. The term

in brackets in the right member of (2.3) has the evaluation

- u/é
T'(s/2) (1+4at-p) B/2 1t follows by (2.3) that a_ = (g) S S

(16a)™n )
We then have the pair of representations
b/2 2 ~
(@) AT )
a ne (16a)n n
n=0
u(r,t) ={ or
2 1
® €5 (4=
1 1-u/2 2
: L 2a) w/2 J r w/ §u/ J (r€) e 4a dg .

B
0 5 1

Compare the latter with the second formula on page 35 of [5].

Example 2. p =2 and

-1 2 2 2 __lfi_.
a(r,t) = (1416t°) &4 t/ (141687 sin —= 5 P Abeos g g2 [ -
1+16t

In this case, the bracketed term in the right member of (2.3) is just

-1
4t[16t2 + (p—l)z] . It then follows in this case that



Z 441'1 2n )l Zn(r t)
u(r,t) =\ or
® 2
\ % jo E I (rE) e ¥ cos(e?/L)acx .

These representations converge absolutely if t > 1/4.

The given function wu(r,t) here is a solution of (1.1) corresponding
to the initial data u(r,0) = sin(rz). From [1], it follows that we
also have the following integral representation for this same u(r,t):

-r 4t 2
u(r,t) = / f € I r— &S /4t sin(g)dg .

Example 3. p =2 and u(r,t) = et Jo(r). Tn this situation

the criterion (1.3) fails and so no expansion of the type (1.4) exists.
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